Пропустить к контенту
Шпорик

Решение задачи 55Математика Макарычев Миндюк Нешков 7 класс

Подробное решение с пошаговыми объяснениями и формулами

Краткий ответ

```json { "short": { "html": " 253 Середина AD : (−6+4)/2=−1. Середина BC : (3+6)/2=4,5.

Краткое решение (для тетради):

```json { "short": { "html": "

253

Середина AD: (−6+4)/2=−1. Середина BC: (3+6)/2=4,5. Расстояние: |4,5−(−1)|=5,5.

254

11/17≈0,647 → между 0,6 и 0,7 (вариант 3).
15/19≈0,789 → между 0,7 и 0,8 (вариант 4).
14/23≈0,609 → между 0,6 и 0,7 (вариант 3).
31/59≈0,525 → между 0,5 и 0,6 (вариант 2).

255

35/23≈1,52; 54/23≈2,35; 83/23≈3,61; 101/23≈4,39. Между 4 и 5 лежит 101/23.

256

Точки: −3 1/3; −2,25; 0,7; 1,5; 2 6/7.

257

Площадь покраски стен: S=2c(a+b).

Для 6×5×3: S=2·3·(6+5)=66 м², банок: 66/12=5,5 → нужно 6.

Для 10×15×5: S=2·5·(10+15)=250 м², банок: 250/12≈20,83 → нужно 21.

", "latex": "\\textbf{253. }M_{AD}=\\frac{-6+4}{2}=-1,\\quad M_{BC}=\\frac{3+6}{2}=4.5,\\quad d=|4.5-(-1)|=5.5.\\\\\n\\textbf{254. }\\frac{11}{17}\\approx0.647\\in(0.6;0.7);\\ \\frac{15}{19}\\approx0.789\\in(0.7;0.8);\\ \\frac{14}{23}\\approx0.609\\in(0.6;0.7);\\ \\frac{31}{59}\\approx0.525\\in(0.5;0.6).\\\\\n\\textbf{255. }\\frac{35}{23}\\approx1.52,\\ \\frac{54}{23}\\approx2.35,\\ \\frac{83}{23}\\approx3.61,\\ \\frac{101}{23}\\approx4.39\\Rightarrow \\text{между }4\\text{ и }5:\\ \\frac{101}{23}.\\\\\n\\textbf{256. }-3\\frac{1}{3},\\ -2.25,\\ 0.7,\\ 1.5,\\ 2\\frac{6}{7}.\\\\\n\\textbf{257. }S=2c(a+b).\\ \\ (6,5,3):\\ S=66,\\ N=\\lceil 66/12\\rceil=6.\\ \\ (10,15,5):\\ S=250,\\ N=\\lceil 250/12\\rceil=21.", "steps": [ "253: найти координаты середин AD и BC как среднее арифметическое концов; взять модуль разности.", "254: оценить дроби десятичными приближениями и выбрать интервал.", "255: сравнить каждую дробь с 4 и 5 (удобно через десятичное приближение).", "256: отметить числа на прямой слева направо по возрастанию.", "257: площадь стен прямоугольного параллелепипеда: 2ac+2bc=2c(a+b); банки = потолок(S/12)." ] }, "detailed": { "html": "

253. Расстояние между серединами AD и BC

На координатной прямой середина отрезка с концами x1 и x2 имеет координату (x1+x2)/2.

Середина AD: A(−6), D(4):
MAD=(−6+4)/2=−2/2=−1.

Середина BC: B(3), C(6):
MBC=(3+6)/2=9/2=4,5.

Расстояние между точками на прямой равно модулю разности координат:
d=|4,5−(−1)|=|5,5|=5,5.

\n

254. Между какими числами находится дробь

Сравним каждую дробь с десятичными интервалами.

  • 11/17: 17·0,6=10,2; 17·0,7=11,9, значит 10,2<11<11,9 ⇒ 0,6<11/17<0,7 (вариант 3).
  • 15/19: 19·0,7=13,3; 19·0,8=15,2, значит 13,3<15<15,2 ⇒ 0,7<15/19<0,8 (вариант 4).
  • 14/23: 23·0,6=13,8; 23·0,7=16,1, значит 13,8<14<16,1 ⇒ 0,6<14/23<0,7 (вариант 3).
  • 31/59: 59·0,5=29,5; 59·0,6=35,4, значит 29,5<31<35,4 ⇒ 0,5<31/59<0,6 (вариант 2).
\n

255. Какая дробь между 4 и 5

Нужно, чтобы 4 < x < 5.

Проверим 101/23:

23·4=92, 23·5=115. Так как 92<101<115, то 4<101/23<5.

Остальные дроби меньше 4, потому что их числители меньше 92 (35, 54, 83 < 92).

\n

256. Отметить точки на координатной прямой

Числа: −3 1/3; 0,7; 1,5; 2 6/7; −2,25.

Упорядочим по возрастанию (слева направо):

−3 1/3 (≈−3,333…), затем −2,25, затем 0,7, затем 1,5, затем 2 6/7 (≈2,857…).

\n

257. Площадь покраски стен и число банок

Склад — прямоугольный параллелепипед: длина a, ширина b, высота c.

Покраска стен — это боковая поверхность (без пола и потолка): две стены a×c и две стены b×c.

Формула:
S = 2ac + 2bc = 2c(a+b).

Таблица:

  • a=6, b=5, c=3: S=2·3·(6+5)=66 м². Банок: 66/12=5,5 ⇒ нужно 6 банок.
  • a=10, b=15, c=5: S=2·5·(10+15)=250 м². Банок: 250/12≈20,83 ⇒ нужно 21 банка.
", "latex": "\\textbf{253.}\\ \\text{Середина отрезка на прямой: }M=\\frac{x_1+x_2}{2}.\\\\\nM_{AD}=\\frac{-6+4}{2}=-1,\\qquad M_{BC}=\\frac{3+6}{2}=\\frac{9}{2}=4.5.\\\\\n\\text{Расстояние: }d=|M_{BC}-M_{AD}|=|4.5-(-1)|=5.5.\\\\[6pt]\n\\textbf{254.}\\ \\text{Сравним с границами интервалов:}\\\\\n\\frac{11}{17}:\\ 17\\cdot0.6=10.2<11<11.9=17\\cdot0.7\\Rightarrow 0.6<\\frac{11}{17}<0.7\\ (\\#3).\\\\\n\\frac{15}{19}:\\ 19\\cdot0.7=13.3<15<15.2=19\\cdot0.8\\Rightarrow 0.7<\\frac{15}{19}<0.8\\ (\\#4).\\\\\n\\frac{14}{23}:\\ 23\\cdot0.6=13.8<14<16.1=23\\cdot0.7\\Rightarrow 0.6<\\frac{14}{23}<0.7\\ (\\#3).\\\\\n\\frac{31}{59}:\\ 59\\cdot0.5=29.5<31<35.4=59\\cdot0.6\\Rightarrow 0.5<\\frac{31}{59}<0.6\\ (\\#2).\\\\[6pt]\n\\textbf{255.}\\ \\text{Нужно }4<\\frac{n}{23}<5\\iff 92Памятка для родителя

253. Середина на координатной прямой — это среднее арифметическое концов: (x1+x2)/2. Потом расстояние между серединами — модуль разности координат.

254. Чтобы понять, между какими десятичными числами лежит дробь a/b, удобно умножать границы интервала на b и сравнивать с a (без деления в столбик).

255. «Между 4 и 5» означает 4<x<5. Для дробей с одинаковым знаменателем 23 это превращается в проверку числителя: 92<n<115.

256. Сначала упорядочить числа по возрастанию (можно приблизить смешанные числа: −3 1/3≈−3,33; 2 6/7≈2,86), затем отметить слева направо.

257. Красятся только стены: две стены a×c и две стены b×c, поэтому S=2ac+2bc=2c(a+b). Банки: делим площадь на 12 и округляем вверх.

", "latex": "\\textbf{Памятка.}\\\\\n253: \\ M=\\frac{x_1+x_2}{2},\\ d=|M_2-M_1|.\\\\\n254: \\ a/b\\in(0.6;0.7)\\iff 0.6bГотовый LaTeX-блок (для вставки)
\\textbf{253. }M_{AD}=\\frac{-6+4}{2}=-1,\\; M_{BC}=\\frac{3+6}{2}=4.5,\\; d=|4.5-(-1)|=5.5.\n\n\\textbf{254. }\\frac{11}{17}\\in(0.6;0.7)\\ (\\#3),\\; \\frac{15}{19}\\in(0.7;0.8)\\ (\\#4),\\; \\frac{14}{23}\\in(0.6;0.7)\\ (\\#3),\\; \\frac{31}{59}\\in(0.5;0.6)\\ (\\#2).\n\n\\textbf{255. }\\frac{101}{23}\\text{ лежит между }4\\text{ и }5.\n\n\\textbf{256. }-3\\frac{1}{3},\\; -2.25,\\; 0.7,\\; 1.5,\\; 2\\frac{6}{7}.\n\n\\textbf{257. }S=2ac+2bc=2c(a+b).\\quad\n(6,5,3):\\ S=66,\\ N=\\lceil 66/12\\rceil=6.\\quad\n(10,15,5):\\ S=250,\\ N=\\lceil 250/12\\rceil=21.
", "latex": "\\textbf{253. }M_{AD}=\\frac{-6+4}{2}=-1,\\; M_{BC}=\\frac{3+6}{2}=4.5,\\; d=|4.5-(-1)|=5.5.\n\n\\textbf{254. }\\frac{11}{17}\\in(0.6;0.7)\\ (\\#3),\\; \\frac{15}{19}\\in(0.7;0.8)\\ (\\#4),\\; \\frac{14}{23}\\in(0.6;0.7)\\ (\\#3),\\; \\frac{31}{59}\\in(0.5;0.6)\\ (\\#2).\n\n\\textbf{255. }\\frac{101}{23}\\text{ лежит между }4\\text{ и }5.\n\n\\textbf{256. }-3\\frac{1}{3},\\; -2.25,\\; 0.7,\\; 1.5,\\; 2\\frac{6}{7}.\n\n\\textbf{257. }S=2ac+2bc=2c(a+b).\\quad\n(6,5,3):\\ S=66,\\ N=\\lceil 66/12\\rceil=6.\\quad\n(10,15,5):\\ S=250,\\ N=\\lceil 250/12\\rceil=21." } } ```

Подробное решение:

Подробное решение готовится.

Смежные задачи

Реклама

Рекламный блок

FAQ

Как пользоваться?
Выберите класс, предмет и задачу — получите краткий ответ и пошаговое решение.
Почему ИИ решает на отлично?
Мы даем модели контекст и формат ответа, чтобы решения были понятными и проверяемыми.
Как проверять ответы?
Сверьте вычисления и подставьте значения в формулы — результат должен совпадать.
Какие форматы ответа?
Краткий ответ на 1–2 предложения, пошаговое решение и формулы/картинка при необходимости.